
Abstract. There is an increasing amount of knowledge

on the cytotoxic properties of cyanotoxins, but rela-

tively little is known regarding their fine specificity and

mechanisms of action. In this study, we investigated the

influence of microcystin-LR and AnTx-a on mouse B-

and T-lymphocyte subpopulations in vitro. Cyanotox-

ins significantly decreased the cell viability after 4 and

24 h, compared to the untreated control. After 24 h

exposure to microcystin-LR and anatoxin-a, the viabil-

ity of splenocytes dropped to 23% and 57%, respec-

tively. Our data demonstrate that microcystin-LR

induced apoptosis specifically in mouse B cells, proba-

bly via the B-cell antigen receptor and mitochondrial

pathway, while the T cells were not affected. AnTx-a

showed cytotoxic effects on both lymphocyte subpopu-

lations, but the effects were driven by mechanisms dif-

ferent from apoptosis. These findings demonstrate that

the cyanotoxins could cause cytotoxic alterations in a

variety of cell types different from the major targets,

operating via distinct mechanisms.

Microcystin-LR (MC-LR) and anatoxin-a (AnTx-a)
are the most common toxins produced by
Cyanoprokaryota (blue-green algae) in marine and
freshwater supplies around the world. These cyanotox-
ins may cause serious health problems and ecological
risks, even death in both humans and animals (for a
review, see Hitzfeld et al., 2000; Lakshmana Rao et al.,
2002b). The most often noted producers of toxins are
Microcystis, Anabena, Aphanizomenon, Cylindrosper-
mopsis, Oscillatoria and Nostoc (Sivonen, 1996).

MC-LR is a cyclic hepatotoxic heptapeptide and its
main mechanism of action is well known. The inhibi-
tion of serine/threonine protein phosphatases PP1 and
PP2A by MC-LR (MacKintosh et al., 1990; Yoshizawa
et al., 1990; Dawson, 1998) leads to hyperphosphoryla-
tion of the cytosolic and cytoskeletal proteins, which
consequently causes hepatocyte deformation and liver
toxicity (Eriksson et al., 1992; Falconer and Yeung,
1992; Yoshida et al., 1997). The tissue specificity of
MC-LR is due to its difficulty in penetrating into the
cells and uptake from the blood requires the action of a
multispecific bile acid transport system (Eriksson et al.,
1990; Runnegar et al., 1991).

AnTx-a is a low-molecular-weight alkaloid with
post-synaptic depolarizing activity. It acts as a stereo-
selective agonist of the acetylcholine receptors in both
neurons and muscle endplates with 8–10-fold higher
potency (Carmichael et al., 1975; Spivak et al., 1980).

In addition to the hepatotoxic or neurotoxic mode of
action, MC-LR and AnTx-a may affect, in different
ways, many other types of cells (non-hepatic and non-
neuronal) as well, causing tumour promotion (Nishiwa-
ki-Matsushima et al., 1992; Falconer and Humpage,
1996; Humpage et al., 2000), production of reactive
oxygen species (Ding et al., 1998; Lakshmana Rao et
al., 2002a; Botha et al., 2004), modulation of the
immune system (Nakano et al., 1989; Yea et al., 2001;
Lankoff et al., 2004a) and induction of apoptosis via
activation of caspases, calpains or Ca2+/calmodulin-
dependent protein kinase II (McDermott et al., 1998;
Fladmark et al., 1999, 2002; Mankiewicz et al., 2000;
Ding et al., 2002; Lakshmana Rao et al., 2002a; Botha
et al., 2004; Lankoff et al., 2004a).

Cells can die in either of two ways: programmed cell
death (apoptosis) or necrosis. Apoptosis is a normal phys-
iological process that is required for the maintenance of
cell homeostasis. The cellular changes of this process are
both morphological and biochemical, including disinte-
gration of the cytoskeleton and subsequent cell shrinkage,
chromatin condensation and activation of specific proteas-
es, the so-called caspases (Kerr et al., 1972; Wyllie et al.,
1980; Nicholson and Thornberry, 1997). At the early stage
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of apoptosis, phosphatidylserine, which is normally locat-
ed on the inner face of the plasma membrane, becomes
exposed on the outer surface, and provides a recognition
signal for engulfment by phagocytes. Apoptosis can be ini-
tiated by a variety of internal and external stimuli, includ-
ing receptor ligation and toxic insults. Necrosis is another
form of cell death, which typically occurs as a result of
mechanical or toxic cell injury. Necrotic cells are distin-
guished from apoptotic cells as they undergo stages such
as cell swelling, plasma membrane rupture, organelle
breakdown and ultimately lysis, allowing release of the
cytoplasmic content and hence induction of an inflamma-
tory response (Wyllie et al., 1980).

There are several reports that demonstrate the apop-
totic effects of MC-LR on chicken and human periph-
eral blood lymphocytes (Mankiewicz et al., 2001;
Lankoff et al., 2004a, b). Compared to the primary tar-
get of MC-LR (hepatocytes), human peripheral blood
lymphocytes were less sensitive to cyanotoxins
(Mankiewicz et al., 2001). McDermott et al. showed
that in other cell types apoptosis can be observed, but
required MC-LR concentrations are 100-fold higher
(McDermott et al., 1998). It has been reported that MC-LR
downregulates lymphocyte functions by decreasing IL-2
mRNA stability or induction of apoptosis (Yea et al.,
2001; Lankoff et al., 2004a). Using lipopolysaccharide
(LPS)- and concanavalin A (ConA)- or phytohaemag-
glutinin (PHA)-stimulated lymphocytes the same
authors hypothesize that B cells are more sensitive than
T cells and more prone to apoptosis.

Although MC-LR was found to inhibit the prolifera-
tion of T and B cells and cytokine production, the fine
specificity of its action on lymphocytes is still unclear.
The goal of this study was to further investigate the
above hypothesis using flow cytometry analysis and
non-stimulated mouse splenocytes. Here we evaluate
the cytotoxic and apoptotic effects of pure MC-LR and
AnTx-a as well as their fine specificity and possible
mechanisms of action.

Material and Methods

Reagents and media
Anatoxin-a (AnTx-a), 3-(4’,5’-dimethylthiazol-2’-

yl)-2,5-diphenyltetrazolium bromide (MTT), penicillin,
streptomycin, propidium iodide (PI) and ammonium
chloride were purchased from Sigma-Aldrich Chemie
GmbH (Steinheim, Germany). Microcystin-LR (MC-
LR) was from BIOMOL GmbH (Hamburg, Germany)
and foetal calf serum (FCS) was from PAA Laborato-
ries GmbH (Linz, Austria). FITC-conjugated Annexin-
V, PE-conjugated anti-TCR (clone H57-597) and
PE-conjugated anti-CD45R/B220 (clone RA3-6B2)
antibodies were purchased from BD PharMingen (San
Diego, CA). Phosphate-buffered saline (PBS) and Dul-
becco’s Modified Eagle’s Medium (DMEM) were from
Gibco™ (Paisley, Scotland, UK).

Cells and treatment with MC-LR and AnTx-a
Spleen cells were isolated aseptically from three

male 8-week-old BALB/c mice (20–23 g), which were
kept in a climate-controlled and pathogen-free environ-
ment and fed standard rodent chow and water ad libi-
tum. Briefly, spleens were removed, homogenized, and
red blood cells were lysed by 0.84% ammonium chlo-
ride solution (pH 7.4). After passage of the cells
through a 40 µm cell strainer (FALCON®, Becton
Dickinson, Le Pont De Claix, France), cells were col-
lected by centrifugation and washed twice with serum-
free DMEM. The cells were resuspended and diluted at
a final density of 1 x 106 cells/ml in DMEM supple-
mented with 10% FCS, 100 U/ml penicillin and 100
µg/ml streptomycin and transferred in 200 µl aliquots
to 96-well plates (Nunc, Roskilde, Denmark).

Mouse splenocytes were exposed to 7.5 µg/ml MC-LR
or 0.1 µg/ml AnTx-a in complete DMEM and incubat-
ed at 37 °C in a 5% CO2-humidified incubator for 4 or
24 h prior to analysis of cytotoxicity by the MTT assay
or of apoptotic effects by flow cytometry.

MTT cell viability assays
The MTT assay was carried out by the method of

Edmondson et al. (1988). This assay is based on the
capacity of mitochondrial succinyl dehydrogenase to
convert the soluble yellow tetrazolium salt into an
insoluble purple-blue formazan product. Briefly, after
the desired time of exposure with cyanotoxins (4, 24 or
48 h), 20 µl of a 0.5% (w/v) solution of MTT in PBS
were added directly to each well and incubated at 37°C
for 3 h. Thereafter, the supernatant was removed and
0.1 ml of 0.04 mol/l HCl in isopropanol was added to
each well in order to facilitate solubilization of the
formazan product. After 30 min at room temperature
the plates were shaken, and absorbance was read at 570
nm in a SPECTRAmax®PLUS microplate spectropho-
tometer (Molecular Devices, Sunnyvale, CA).

Flow cytometry
Mouse splenocytes treated with MC-LR and AnTx-a

were subjected to two separate staining procedures with
different antibodies: (1) FITC-conjugated Annexin-V
(staining for apoptosis) and PE-conjugated anti-TCR
(staining for T cells) and (2) FITC-conjugated Annexin-V
(staining for apoptosis) and PE-conjugated anti-
CD45R/B220 (staining for B cells).

After the exposure period (4 or 24 h) cells were
washed twice (PBS, 1% FCS) and incubated with the
antibodies for 20 min at 4 °C in the dark. Cells were
then washed twice and analysed by setting a gate on
lymphocyte populations using forward and side scatter
and plotting data on a log scale using a FACSort (Bec-
ton Dickinson, Mountain View, CA) equipped with Cell-
Quest software. The dead cell populations (necrotic
cells) were gated out by propidium iodide staining
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immediately before analysis. A total of 10,000 events in
a live gate were acquired, although all ungated events
were saved for later analysis.

Statistics
The results from cytotoxicity tests are reported as

mean ± SE from individual determinations with at least
four replicates. Data were compared using unpaired
(Mann-Whitney U) nonparametric tests. A P value
≤ 0.05 was considered significant. Statistical tests were
performed with StatView software (SAS Institute Inc.,
Cary, NC).

Results

Cell viability of mouse splenocytes following
treatment with MC-LR and AnTx-a

Freshly prepared mouse splenocytes were treated
with 7.5 µg/ml MC-LR or 0.1 µg/ml AnTx-a for 4 and
24 h. Toxin concentrations were chosen according to
literature data. As shown in Fig. 1A, MC-LR signifi-
cantly decreased the cell viability (as measured by
MTT assay) after 4 and 24 h, compared to the untreat-
ed control. At 4 h post-treatment, rapid loss of viability
was observed as more than 60% of the cells were dead.
After 24 h exposure to MC-LR, the viability of spleno-
cytes dropped to 23% in comparison to the control.
Treatment of splenocytes with AnTx-a (Fig. 1B) had a
lower cytotoxic effect than MC-LR (Fig. 1A). The per-
centages of cell viability at 4 and 24 h post-treatment
were 76% and 57%, respectively. Using one concentra-
tion of treatment both cyanotoxins MC-LR and AnTx-a
showed a time-dependent decrease in cell viability with
higher potency for MC-LR.

The results obtained in these experiments demon-
strated that hepatotoxins (MC-LR) and neurotoxins
(AnTx-a) could cause cytotoxic alterations in a variety
of cell types different from the major targets.

Specificity and apoptotic effect of MC-LR and
AnTx-a on mouse lymphocytes

Using flow cytometry, we then investigated which
lymphocyte subpopulations (T cells and/or B cells) are
affected after MC-LR and AnTx-a treatment, and
whether this cytotoxic alteration is due to apoptosis or
necrosis. Double staining with Annexin-V FITC (which
binds to phosphatidylserine, an early apoptotic marker)
and propidium iodide (which binds to nuclear DNA
after plasma membrane degradation) allowed distin-
guishing apoptotic and necrotic cells. In Figure 2 it can
be seen that 4 h after treatment with MC-LR the T cells
(33% from the splenocytes) were not affected (Fig. 2A,
B), while the B cells (54% from the splenocytes)
showed 18% of Annexin-V+ (apoptotic) cells (Fig. 2C,
D). The frequency of necrotic cells at that time point in
both subpopulations was negligible (staining by propid-
ium iodide).

After 24 h exposure of mouse splenocytes to MC-LR,
again there was no significant increase in Annexin-V+ T
cells (Fig. 3A, B). At the same time point, an increase
of approximately 50% in apoptotic B cells was
observed (Fig. 3C, D). The percentage of necrotic cells
gradually increased with time in both T- and B-cell sub-
populations with higher indices for T cells.

These results clearly indicate that MC-LR induces
apoptosis only in B cells, probably via B-cell receptor-
specific activation of kinase pathways, while the T cells
are not affected.

In contrast to MC-LR, exposure of mouse spleno-
cytes to AnTx-a only for 4 h caused significant cell
death in both lymphocyte subpopulations as more then
80% of splenocytes were stained with propidium iodide
(Fig. 4). This indicates that most cells are in late apop-
totic or secondary necrotic phase (Annexin-V+/PI+). No
staining of Annexin-V was observed in the viable T-
and B-cell subpopulations. Similar results were
obtained 24 h after treatment with AnTx-a (data not
shown). Therefore, the cytotoxic effects of MC-LR and
AnTx-a on lymphocytes operate via different mecha-
nisms.

Fig. 1. Effect of MC-LR (A) and AnTx-a (B) on the via-
bility of freshly prepared mouse splenocytes. The cells
were treated with 7.5 µg/ml MC-LR or 0.1 µg/ml AnTx-a
for 4 and 24 h, and viability was determined by MTT
assay. The values are mean ± SE of four replicates. *, P <
0.05; **, P < 0.01; ***, P < 0.001.
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Discussion

The present study was conducted to exam-
ine which type of mouse lymphocytes (T
and/or B cells) are specifically altered after
exposure to MC-LR and AnTx-a. We have
clearly demonstrated here that MC-LR
specifically induces apoptosis in mouse B
cells, while the T cells were not affected.
AnTx-a showed cytotoxic effects on both
lymphocyte subpopulations.

It has been shown previously that MC-LR
and AnTx-a can induce apoptosis in a variety
of cell types as well as necrosis when applied
at higher concentrations (McDermott et al.,
1998; Lakshmana Rao et al., 2002a). Yea et
al. (2001) and Lankoff et al. (2004a) reported
that MC-LR downregulates lymphocyte
functions. Using LPS- and ConA- or PHA-
stimulated lymphocytes both groups have
shown that MC-LR suppresses the prolifera-
tion of LPS-stimulated lymphocytes (B
cells). Data about the proliferation of ConA-
or PHA-stimulated lymphocytes (T cells)
were controversial. Yea et al. (2001) did not
found any effect of MC-LR (0–50 µg/ml) on
the proliferative response to ConA-stimulat-
ed lymphocytes, whereas Lankoff et al.
(2004a) showed inhibition of the T-cell pro-
liferation at 25 µg/ml MC-LR as well as
decreased production of IL-2 and increased
production of IL-6. The authors noticed that
B cells were more sensitive to MC-LR expo-
sure than T cells. This assumption was based
on the proliferative response of stimulated
lymphocytes. Our data from the flow cyto-
metry analysis of MC-LR-treated non-stimu-
lated lymphocytes showed that MC-LR
induces apoptosis in the B-cell subpopulation,
but not in T cells. To avoid false-positive
results due to overstimulation, we have used
non-stimulated lymphocytes and measured
externalization of phosphatidylserine (by
Annexin-V) after short exposure to MC-LR (4
and 24 h). Previous studies showed that MC-
LR can induce all the apoptotic changes in
hepatocytes in less than 1 h (Ding et al., 2000).

Several pathways of apoptosis have been
described during the last years: mitochondri-
al pathway, death receptor-mediated pathway
and perforin-dependent exocytosis pathway.
Since MC-LR inhibits protein phosphatases 1
and 2A (Yoshizawa et al., 1990; Carmichael,
1994), it has been suggested that the induc-
tion of apoptosis by MC-LR is due to protein
hyperphosphorylation (McDermott et al.,
1998; Fladmark et al., 2002).
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Fig. 2. Flow cytometric analysis of mouse T cells (A, B) and B cells
(C, D) at 4 h post-exposure of the isolated splenocytes to 7.5 µg/ml
MC-LR. Cells were stained with anti-TCR PE-conjugated and Annex-
in-V FITC-conjugated antibodies (for T cells) or CD45R/B220 PE-
conjugated and Annexin-V FITC-conjugated antibodies (for B cells) in
two separate stainings. Propidium iodide was added immediately
before gating. The histograms are gated on TCR+ or CD45/B220+

cells, respectively, and the region M1 indicates apoptotic cells.

Fig. 3. Flow cytometric analysis of mouse T cells (A, B) and B cells
(C, D) at 24 h post-exposure of the isolated splenocytes to 7.5 µg/ml
MC-LR. Cells were stained with anti-TCR PE-conjugated and Annex-
in-V FITC-conjugated antibodies (for T cells) or CD45R/B220 PE-
conjugated and Annexin-V FITC-conjugated antibodies (for B cells) in
two separate stainings. Propidium iodide was added immediately
before gating. The histograms are gated on TCR+ or CD45/B220+

cells, respectively, and the region M1 indicates apoptotic cells.



Other studies suggested that MC-LR initiates apop-
tosis by the formation of reactive oxygen species
(ROS), which are known to cause damage to cellular
membranes and particularly that of mitochondria
(Ding et al., 1998, 2000, 2001; Botha et al., 2004). An
early event in the mitochondrial pathway is the trans-
fer of cytochrome-c from the outer mitochondrial
membrane into the cytosol, where it functions as a
cofactor for triggering the effector machinery of apop-
tosis (Zamzami et al., 1995). The disruption of mito-
chondrial integrity is not only important for the release
of cytochrome-c, but also for the delivery into the
cytosol of a fraction of caspase-9 and -3 that is local-
ized in the intermembrane space and has been shown to
be involved in apoptosis (Vander Heiden and Thomp-
son, 1999). On the other hand, Ding et al. failed to
detect increased activity of caspase-9 and caspase-3 in
MC-LR-treated cells (Ding et al., 2002). There are also
reports indicating that death receptor-mediated sig-
nalling can trigger the activation of the mitochondrial
pathway of apoptosis. The protein involved in the trig-
gering is caspase-8, which cleaves Bid (Li et al., 1998;
Luo et al., 1998), a member of the Bcl-2 family.

Taking into account all the above evidences and
based on the data we have obtained about the function-
al integrity of mitochondria as determined by the MTT
test and externalization of phosphatidylserine as deter-
mined by flow cytometry, it seems that MC-LR induces

apoptosis in the B lymphocytes via the B-cell
antigen receptor (BCR) pathway. Several
investigations of BCR-mediated apoptosis
point to the mitochondrial/intrinsic pathway
with involvement of unique proteases,
notably calpain and caspase-2 (Chen et al.,
1999; Ruiz-Vela et al., 1999; Ding et al.,
2002) or activation of kinase pathways
(Graves et al., 1998).

It has been reported that AnTx-a can
induce apoptosis in non-neuronal cells medi-
ated by ROS and caspase activation (Laksh-
mana Rao et al., 2002a). Although the
cytotoxic effect of AnTx-a on mouse lym-
phocytes was not as high as that of MC-LR as
measured by MTT (Fig. 1), our flow cytome-
try data indicated that both subpopulations (T
and B cells) are severely affected 4 h after
treatment with 0.1 µg/ml AnTx-a (Fig. 4).
Therefore, the cytotoxic action of AnTx-a on
lymphocytes appears to be non-selective and
non-specific. Apoptotic cells from the viable
T- and B- cell populations were not detected.
Compared to MC-LR, mitochondrial trigger-
ing most probably operates by a different
mechanism and this mode of action awaits
further elucidation.
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